Abstract

The Kaplan–Yorke conjecture states that for ‘typical’ dynamical systems with a physical measure, the information dimension and the Lyapunov dimension coincide. We explore this conjecture in a neighborhood of a system for which the two dimensions do not coincide because the system consists of two uncoupled subsystems. We are interested in whether coupling ‘typically’ restores the equality of the dimensions. The particular subsystems we consider are skinny baker's maps, and we consider uni-directional coupling. For coupling in one of the possible directions, we prove that the dimensions coincide for a prevalent set of coupling functions, but for coupling in the other direction we show that the dimensions remain unequal for all coupling functions. We conjecture that the dimensions prevalently coincide for bi-directional coupling. On the other hand, we conjecture that the phenomenon we observe for a particular class of systems with uni-directional coupling, where the information and Lyapunov dimensions differ robustly, occurs more generally for many classes of uni-directionally coupled systems (also called skew-product systems) in higher dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.