Abstract
Bistable scissor structures, consisting of beams connected by hinges, are transportable and can be transformed from a compact to a deployed configuration. Geometric incompatibilities can be introduced during transformation to obtain a bistable structural response which enforces some instantaneous structural stability in the deployed state. The design of bistable scissor structures requires assessing both the non-linear transformation behaviour, as well as the service state, since a proper structural design has to provide stiffness in the deployed state as well as flexibility during transformation. These contradicting requirements were formulated previously in Arnouts et al. [1] as a multi-objective shape and sizing optimisation (SSO). The originality of this contribution is the elaboration of a design methodology coupling a novel topology optimisation (TO) to SSO and demonstrating its performance for the design of a bistable deployable wall. In this novel step, the number of bistable deployable modules (BDM) of the structure is optimised at low computational cost by finding the location of BDM, yielding mixed structures composed of BDM and non-bistable modules (NBDM) of lower weight and complexity than structures entirely built from BDM. TO is incorporated and assessed in the design methodology prior or subsequent to the SSO step. It is shown that the mixed structures combining BDM and NBDM resulting from the new coupled TO-SSO approach outperform pure BDM based structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the International Association for Shell and Spatial Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.