Abstract
The aeroelastic behaviour of vibrating blade assemblies is usually investigated in the frequency domain where the determination of aeroelastic stability boundaries is separated from the computation of linearized unsteady aerodynamic forces. However, nonlinear fluid-structure interaction caused by oscillating shocks or strong flow separation may significantly influence the aerodynamic damping and hence effect a shift of stability boundaries. In order to investigate such aeroelastic phenomena, the governing equations of structural and fluid motion have to be simultaneously integrated in time. In this paper a technique is presented which analyses the flutter behaviour of turbomachinery bladings in the time domain. The structural part of the governing aeroelastic equations is time-integrated according to the algorithm of Newmark, while the unsteady airloads are computed at every time step by a Navier–Stokes code. The link between the two time integrations is an automatic grid generation in which the used mesh is dynamically deformed so that it conforms with the deflected blades at every time step. The computed time series of the aeroelastic simulation of an assembly of highly loaded compressor blades vibrating freely in transonic flow are presented. The energy transfer between fluid and structure is here dominated by vibrating shocks and shock-boundary layer interaction. It is investigated if the predicted aeroelastic stability boundaries differ from those of a linearised method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.