Abstract

Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued parameters which allows us to analyze the dispersion properties also in presence of finite Q factors for the coupled resonator states. Near the band-edge the group velocity saturates at a finite value v_g/c \propto \sqrt{1/Q} while in the band center, the group velocity is unaffected by a finite Q factor as compared to ideal resonators without any damping. However, the maximal group delay that can be envisioned is a balance between having a low group velocity while not jeopardizing the propagation length. We find that the maximal group delay remains roughly constant over the entire bandwidth, being given by the photon life time of the individual resonators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.