Abstract

A new component of the cosmic medium, a light scalar field or ''quintessence '', has been proposed recently to explain cosmic acceleration with a dynamical cosmological constant. Such a field is expected to be coupled explicitely to ordinary matter, unless some unknown symmetry prevents it. I investigate the cosmological consequences of such a coupled quintessence (CQ) model, assuming an exponential potential and a linear coupling. This model is conformally equivalent to Brans-Dicke Lagrangians with power-law potential. I evaluate the density perturbations on the cosmic microwave background and on the galaxy distribution at the present and derive bounds on the coupling constant from the comparison with observational data. A novel feature of CQ is that during the matter dominated era the scalar field has a finite and almost constant energy density. This epoch, denoted as $\phi $MDE, is responsible of several differences with respect to uncoupled quintessence: the multipole spectrum of the microwave background is tilted at large angles, the acoustic peaks are shifted, their amplitude is changed, and the present 8Mpc$/h$ density variance is diminished. The present data constrain the dimensionless coupling constant to $|\beta |\leq 0.1$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call