Abstract

The electronic properties of two-dimensional double-quantum dots in the presence of external magnetic fields are investigated by a variational Monte Carlo method with s and s-p trial wavefunctions. We compute the exchange energy between two electrons as well as the two-electron total Coulomb energy for the singlet and triplet states in both strongly and weakly coupled quantum dots, and compare our data with the results of the numerically exact diagonalization of the Schrödinger Equation. In both systems, the singlet Coulomb energy decreases in magnetic fields as a consequence of magnetic localization, whereas the triplet Coulomb energy reaches a maximum value at intermediate magnetic fields before decreasing. Overall, good agreement between the two methods is obtained with s-p orbital trial wavefunction in strongly and weakly coupled quantum dots

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.