Abstract

The sulfate–methane transition zone (SMTZ) is an important diagenetic redox boundary within marine sediments where the anaerobic oxidation of methane (AOM), coupled with bacterial sulfate reduction, can promote sulfur isotopic enrichments in several solid phase minerals including pyrite (FeS2). Authigenic pyrite can form in concentrated abundances within the SMTZ and as such, can be used as a proxy to identify paleo-SMTZs. This study uses enrichments in 34S and anomalously high abundances of authigenic pyrites in 287 samples from the northern South China Sea (SCS) to determine the paleo-SMTZ. The pyrite samples were collected from sediment cores acquired at three sites, each of which are known to be located in natural gas hydrate-bearing regions. We assess the relative abundances of authigenic pyrites, the types of pyrite morphologies recovered in the cored sediments, and the sulfur isotopic values of recovered pyrite samples using two methods: (1) handpicked sample analysis using a binocular microscope, and (2) the chromium reduction method. Our results show that pyrite concentrations and sulfur isotopic compositions exhibit synchronous fluctuations, particularly from 6.8 m below seafloor (mbsf) to 8.4 mbsf at all three study sites. There is a significant increase in the occurrence of rod-like pyrite morphology within this key interval. We define the position of the paleo-SMTZ by the presence of anomalously high accumulations of pyrites at greater than 5.0wt.% using the handpicking method or greater than 0.5wt.% via the chromium reduction method, along with positive Δδ34S excursions greater than 10.0‰ VCDT. We discovered a regional paleo-SMTZ that is shallower than the modern SMTZ, suggesting a previous period of elevated methane flux from depth, possibly related to widespread gas hydrate dissociation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call