Abstract

Various approaches are currently used for the analysis of piles under vertical and lateral loading. Among these, the beam-on-a-nonlinear Winkler foundation (BNWF) approach using published P-y, T-z and Q-z curves is widely used in practice. In this approach, the P-y and T-z responses are generally uncoupled from each other. The objective of this paper is to investigate the influence that the coupling of the P-y and T-z responses has.on the cyclic and dynamic response of piles in cohesionless soil. A cyclic model is first developed and a parametric study is conducted to investigate the effect the initial confining pressure, angle of wall friction and effective vertical stiffness have on the lateral cyclic hysteretic response. A dynamic model is then developed, and used to study the response of a single pile in cohesionless soil under horizontal and/or vertical ground motion. Results from the parametric study showed that the three parameters did not have a significant influence on the lateral cyclic hysteretic response. Under horizontal and/or vertical ground motion, the horizontal ground motion was observed to dominate the inertial interaction response, and significantly affected both the horizontal and vertical displacement response, mainly due to second-order P-Δ and gapping effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call