Abstract
The conversion of asphaltite (empirical formula CH1.23N0.017S0.037O0.01) in supercritical water (SCW) flow at 400°C and 30 MPa with and without addition of aluminum shavings is investigated. The composition and amount of the products and insoluble conversion residue are determined by means of liquid-adsorption chromatography, elemental analysis, IR and 1H NMR spectroscopy, mass spectrometry, and gas chromatography/mass spectrometry. It is found that SCW not only dissolves asphaltite components, but also participates in redox reactions. Hydrogen formation and heat evolution during aluminum oxidation by SCW promote the in situ hydrogenation of asphaltite, increase the fraction of aromatic and polyaromatic compounds in conversion products, decrease the yield of the insoluble conversion residue from 44.5 to 11.3%, and decrease the olefine fraction. When aluminum is added, the degree of asphaltite desulfurization that results from sulfur removal in the form of H2S increases by more than 3.5 times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.