Abstract

In this review, we report on the design, fabrication, and characterization of photonic crystal arrays, made of two and three coupled nanocavities. The properties of the cavity modes depend directly on the shape of the nanocavities and on their geometrical arrangement. A non-negligible role is also played by the possible disorder because of the fabrication processes. The experimental results on the spatial distribution of the cavity modes and their physical characteristics, like polarization and parity, are described and compared with the numerical simulations. Moreover, an innovative approach to deterministically couple the single emitters to the cavity modes is described. The possibility to image the mode spatial distribution, in single and coupled nanocavities, combined with the control of the emitter spatial position allows for a deterministic approach for the study of cavity quantum electrodynamics phenomena and for the development of new photonic-based applications.

Highlights

  • The development of fabrication technologies that enable the capability of patterning materials on dimensions smaller than the wavelength of light has opened the way to new classes of applied physics fields, like plasmonics, photonics, spintronics, and to the experimental exploitation of quantum effects [1,2]

  • Once the two coupled cavities case has coupled photonic crystals (PCs) cavities case has been analyzed, we considered a system of three coupled PC cavities been analyzed, considered a system three coupled

  • After the comprehension of the mode distribution and the demonstration that the transition from the localized to non-localized mode is controlled by the mode detuning, the symmetry of the coupled modes have been verified in details [35]. This property depends on the phase characteristics and it is not trivial to be measured in the near field; we demonstrated that it is possible to probe it using a far field photoluminescence analysis by considering the two coupled PC cavities in analogy with Young’s double slit experiment

Read more

Summary

Introduction

The development of fabrication technologies that enable the capability of patterning materials on dimensions smaller than the wavelength of light has opened the way to new classes of applied physics fields, like plasmonics, photonics, spintronics, and to the experimental exploitation of quantum effects [1,2]. This is of particular interest in the field of optics. As in the semiconductor crystal, the atomic periodic potential gives origin to the band gaps between the valence and conduction energy bands, and in the photonic crystals, the periodic modulation of the refractive index of the dielectric materials allow for the formation of photonic band gaps, that is, a frequency range in which light propagation is forbidden

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call