Abstract

Speckle is a type of noise which is often present in ultrasound images. Speckle is formed due to constructive or destructive interference of ultrasound waves. Due to the granular pattern of speckle noise, it hides important details in ultrasound images. Many despeckling techniques are proposed in the literature, but most of them fail to reach a balance between the removal of speckle noise and preservation of the fine details in the image. In this work, an improved coupled PDE model is proposed which combines second order selective degenerate diffusion (SDD) model and fourth order PDE model based on the assumption that speckle in ultrasound image follows Gamma distribution. An edge noise interior (ENI) method is used to control the diffusion. With the help of ENI controlling function, the diffusion at edge pixels and noisy pixels are selectively accomplished with varying speed. Thus, the proposed model preserves the edges and fine texture details in the image. The model is tested on simulated images after corrupting the images with various levels of Gamma noise. Further, we have tested it on real ultrasound images also. The performance of the proposed model is compared with other similar techniques and the proposed method outperforms other state-of-the-art methods, both in terms of qualitative and quantitative measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.