Abstract

<p>In an ensemble prediction system (EPS) the uncertainty in the initial atmospheric conditions is usually represented via perturbation of the initial atmospheric state and different boundary conditions at the beginning and throughout the duration of the forecast. These approaches exclude the uncertainty due to the representation of physical processes within the parameterization schemes of a numerical weather prediction model (NWP). Much of the uncertainty in the presentation of physical process arises from uncertain parameter values regulating key physical processes in the boundary-layer and microphysics schemes. This uncertainty can be represented with a Stochastically Perturbed Parameterization (SPP) scheme, where parameter values for the different model grid points are randomly selected from a defined probability density function. The SPP scheme can improve model performance and increase ensemble spread, but may lead to unrealistic parameter values, which can introduce additional model bias. A potential solution is to use coupled/correlated perturbations for relevant SPP parameters to increase the model performance and ensemble spread, while maintaining physically realistic ranges for the parameters. In this study, we investigate the impact of coupled perturbations in key parameters within the boundary-layer and microphysics schemes of the HarmonEPS model using the new SPP scheme. The performance of the coupled perturbations experiment is evaluated against HarmonEPS experiments using independent parameter perturbations, and perturbations in the initial atmospheric state and boundary conditions for both a winter and a summer period.  We find that coupled perturbations in the SPP scheme can decrease model bias and increase the ensemble spread for the 2m temperature and relative humidity, 10m-wind speed and total cloud cover.</p>

Highlights

  • OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications

  • OSA3.5: MEDiterranean Services Chain based On climate PrEdictions (MEDSCOPE)

  • UP2.1 : Cities and urban areas in the earth- OSA3.1: Climate monitoring: data rescue, atmosphere system management, quality and homogenization 14:00-15:30

Read more

Summary

Introduction

OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications. EMS Annual Meeting Virtual | 3 - 10 September 2021 Strategic Lecture on Europe and droughts: Hydrometeorological processes, forecasting and preparedness Serving society – furthering science – developing applications: Meet our awardees ES2.1 - continued until 11:45 from 11:45: ES2.3: Communication of science ES2.2: Dealing with Uncertainties

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.