Abstract

Coupled pacing (CP), a method for controlling ventricular rate during atrial fibrillation (AF), consists of a single electrical stimulation applied to the ventricles after each spontaneous activation. CP results in a mechanical contraction rate approximately one-half the rate during AF. Paired stimulation in which two electrical stimuli are delivered to the ventricles has also been proposed as a therapy for heart failure. Although paired stimulation enhances contractility, it greatly increases energy consumption. The primary hypothesis of the present study is that CP improves cardiac function during acute AF without a similar increase in energy consumption because of the reduced rate of ventricular contractions. In a canine model, CP was applied during four stages: sinus rhythm (SR), acute AF, cardiac dysfunction (CD), and AF in the presence of cardiac dysfunction. The rate of ventricular contraction decreased in all four stages as the result of CP. In addition, we determined the changes in external cardiac work, myocardial oxygen consumption, and myocardial efficiency in the each of four stages. CP partially reversed the effects of AF and CD on external cardiac work, whereas myocardial oxygen consumption increased only moderately. In all stages but SR, CP increased myocardial efficiency because of the marked increases in cardiac work compared with the moderate increases in total energy consumed. Thus this pacing therapy may be a viable therapy for patients with concurrent atrial fibrillation and heart failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call