Abstract

In this paper, we study the dynamics of autonomous ODE systems with [Formula: see text] symmetry. First, we consider eight weakly-coupled oscillators and establish the condition for the existence of stable heteroclinic cycles in most generic [Formula: see text]-equivariant systems. Then, we analyze the action of [Formula: see text] on [Formula: see text] and study the pattern of periodic solutions arising from Hopf bifurcation. We identify the type of periodic solutions associated with the pairs [Formula: see text] of spatiotemporal or spatial symmetries, and prove their existence by using the [Formula: see text] Theorem due to Hopf bifurcation and the [Formula: see text] symmetry. In particular, we give a rigorous proof for the existence of a fourth branch of periodic solutions in [Formula: see text]-equivariant systems. Further, we apply our theory to study a concrete case: two coupled van der Pol oscillators with [Formula: see text] symmetry. We use normal form theory to analyze the periodic solutions arising from Hopf bifurcation. Among the families of the periodic solutions, we pay particular attention to the phase-locked oscillations, each of them being embedded in one of the invariant manifolds, and identify the in-phase, completely synchronized motions. We derive their explicit expressions and analyze their stability in terms of the parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.