Abstract

Coupled linear oscillators provide a central paradigm for the combined behavior of coupled systems and the emergence of normal modes. Nonlinear coupling of two autonomous oscillators provides an equally important paradigm for the emergence of collective behavior through synchronization. Simple asymmetric coupling of integrate and fire oscillators captures the essence of frequency locking. Quasiperiodicity on the torus (action-angle oscillators) with nonlinear coupling demonstrates phase locking, while the sine-circle map is a discrete map that displays multiple Arnold tongues at frequency-locking resonances. External synchronization of a phase oscillator is analyzed in terms of the “slow” phase difference, resulting in a beat frequency and frequency entrainment that are functions of the coupling strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.