Abstract

We investigate the orbital and rotational evolution of the CoRoT-7 two-planet system, assuming that the innermost planet behaves like a Maxwell body. We numerically resolve the coupled differential equations governing the instantaneous deformation of the inner planet together with the orbital motion of the system. We show that, depending on the relaxation time for the deformation of the planet, the orbital evolution has two distinct behaviours: for relaxation times shorter than the orbital period, we reproduce the results from classic tidal theories, for which the eccentricity is always damped. However, for longer relaxation times, the eccentricity of the inner orbit is secularly excited and can grow to high values. This mechanism provides an explanation for the present high eccentricity observed for CoRoT-7 b, as well as for other close-in super-Earths in multiple planetary systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.