Abstract

Here, we report plasmonically enhanced thin dye-sensitized solar cells (DSSCs) in an imidazolium-dicyanamide based ionic liquid, in which size-controlled metal (silver) nanoparticles (AgNPs) with passivation layers of a few nanometers are arranged into the electrolyte and photo-electrodes. It was revealed that the AgNPs in the electrolyte and the photo-electrode have distinct effects on device performance via different coupling mechanisms. Strong far-field scattering is critical in the electrolyte while near-field scattering is efficient in the photo-electrode. Indeed, we find that the power conversion efficiency of the DSSC can be substantially improved by a synergistic arrangement of the AgNPs in the electrolyte and the photo-electrode. Furthermore, an imidazolium-dicyanamide based nonvolatile ionic liquid electrolyte for MNPs is demonstrated to provide thin plasmonic DSSCs with good stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.