Abstract

A new class of shape-enforced synthetic polyheterocyclic molecular strands, containing both a helical and a linear domain, has been designed and synthesized. On reaction with Pb(II), under the effect of cation binding to the coordination subunits, the helical section unfolds into a linear shape in the complex and the linear domain folds into a helical ligand wrapped around the bound cations. Such double-domain ligand strands are thus able to undergo a combined unfolding-folding interconversion on binding and release of metal cations. These changes can be modulated through coupling to a competing ligand that reversibly binds and releases metal cations, when respectively unprotonated and protonated, on effecting alternate pH changes. The resulting process thus performs nanomechanical extension/contraction molecular motions of a linear motor type, which is fueled by acid-base neutralization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.