Abstract
This paper presents extensions which improve the performance of the shape-based deformable active contour model presented earlier in [9]. In contrast to that work, the segmentation framework that we present in this paper allows multiple shapes to be segmented simultaneously in a seamless fashion. To achieve this, multiple signed distance functions are employed as the implicit representations of the multiple shape classes within the image. A parametric model for this new representation is derived by applying principal component analysis to the collection of these multiple signed distance functions. By deriving a parametric model in this manner, we obtain a coupling between the multiple shapes within the image and hence effectively capture the co-variations among the different shapes. The parameters of the multi-shape model are then calculated to minimize a single mutual information-based cost functional for image segmentation. The use of a single cost criterion further enhances the coupling between the multiple shapes as the deformation of any given shape depends, at all times, upon every other shape, regardless of their proximity. We demonstrate the utility of this algorithm to the segmentation of the prostate gland, the rectum, and the internal obturator muscles for MR-guided prostate brachytherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Information processing in medical imaging : proceedings of the ... conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.