Abstract

In this work, we experimentally and theoretically proved a flexible fine random laser from a two-face double grating plasmonic structure based on PDMS. Accordingly, PDMS was fabricated using the nanoimprint lithography method and coated by a thin gold layer with a thickness of 35 nm using a PVD device and light-emitting polymer (F8PT) to enhance the scattering and efficiency of the random laser. Using a plasmonic gold grating as a substrate, the simulation results compared the upside and downside of the plasmonic double grating structure. Moreover, an enhancement was observed in light transmission, and it is common to predict high efficiency in random lasing properties. The experimental results showed a comparison between normal plasmonic double grating samples and symmetric and asymmetric double grating -based nanostructures with thicknesses of 200, 400 and 600 μm and reported that random lasing properties had better results for samples with thinner spaces based on coupled mode effects. Correspondingly, this was done by increasing the intensity and decreasing the lasing threshold from 22 μJ in normal double grating to 16 μJ in the thinnest double grating structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call