Abstract

Advance in computational rheology allows for in silico predictions of the viscoelastic responses of arbitrarily branched polymer melts. While detailed branching structure is required for the rheology predictions, rheology itself is often the most sensitive tool to detect low levels of branching. With rheological experiments and computational modeling of a set of nominally linear and model comb ethylene-butene copolymers, we show that coupled models for the synthesis and rheology can integrate diverse measurements, incorporating inherent experimental uncertainties. This approach allows us to achieve tight bounds on the branching structures of the constituent molecules. Next, we numerically explore the effects of the numbers and molar masses of side arms in comb polymers on the viscoelastic responses in both the linear and nonlinear regimes. Such computational exploration can aid in designing specific polymers suitable for a given processing scenario.Graphical abstractCoupled models for synthesis and rheology allow tight bounds on branching architecture and parametric exploration of flow properties of statistically branched polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.