Abstract

The effect of subsurface drainage on agricultural catchment outflow has been debated for quite some time. Concerning downstream peak flow, it is a complex task to predict the impact of agricultural drainage because different flow media are involved: the soil, pipe drainage networks and open channel networks. In France, drain pipes are designed to operate under a free-surface flow condition. Nevertheless, during intense rainfall events, some pipe sections may flow under pressurised conditions, so that a complex interaction between pipe networks and groundwater flows appears in the vicinity of these sections. In this paper, an integrated modelling strategy is considered in order to analyse these flow interactions. A 10 Saint-Venant network model is combined with a 2D Boussinesq shallow groundwater flow model by means of special internal boundary conditions which take into account the flow interactions. This study follows field experiments conducted in a small subsurface drained catchment, where drainage discharge and pressure heads were monitored in a buried pipe collector and water table profiles were monitored in the field. The simulation results of the coupled model are in good agreement with experimental observations. Moreover, it satisfactorily simulates the behaviour of the drainage system during the pressurisation stages. The model is also applied to a scenario addressing the effect of pressurisation, as compared to non-pressurisation, at the outlet. The coupled model reveals the relation existing between pipe pressurisation and hydrograph timing. Pipe pressurisation results in temporary storage of discharging water, which is released later when pressurisation stops. (c) 2014 Published by Elsevier B.V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call