Abstract
A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.