Abstract

This paper describes the 3D simulation of a space weather event using the coupled model approach adopted by the Center for Integrated Space Weather Modeling (CISM). The simulation employs corona, solar wind, and magnetosphere MHD models, and an upper atmosphere/ionosphere fluid dynamic model, with interfaces that exchange parameters specifying each component of the connected solar terrestrial system. A hypothetical coronal mass ejection is launched from the Sun by a process emulating photospheric field changes such as are observed with solar magnetographs. The associated ejected magnetic flux rope propagates into a realistically structured solar wind, producing a leading interplanetary shock, sheath, and magnetic cloud. These reach 1 AU where the solar wind and interplanetary magnetic field parameters are used to drive the magnetosphere–ionosphere–thermosphere coupled model in the same manner as upstream in situ measurements. The simulated magnetosphere responds with a magnetic storm, producing enhanced convection and auroral energy inputs to the upper atmosphere/ionosphere. These results demonstrate the potential for future studies using a modular, systemic numerical modeling approach to space weather research and forecasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.