Abstract
A localized high hydraulic conductivity zone with high water pressure is denoted as a hazardous zone. This study focuses on the 3D coupled mechanical and hydraulic analysis of the effect of a front hazardous zone on shield tunnelling. The tunnelling process is modelled by a step-by-step excavation. And a series of three-dimensional coupled mechanical and hydraulic analysis are performed to estimate the distribution of the TSR of the ground ahead of the tunnel face. The result show that the tunnelling directly influences on the distribution of the pore water pressure and the TSR. The maximum influence range of the hazardous zone on the face stability is within 4 times the R value. And the high water pressure can induce a failure of the ground at the tunnel face by itself in conjunction with a poor ground condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.