Abstract
We present a systematic investigation of tunable magnetization dynamics of coupled magnetic nanostructures, arranged in one-dimensional arrays of horizontally and vertically coupled linear chains and in two-dimensional arrays of square artificial spin ice lattice. The spatial distribution of the demagnetization field is markedly sensitive to the lattice arrangement, leading to a significant modification of the collective behavior of static and dynamic properties of the arrays. Using ferromagnetic resonance spectroscopy, the engineering of demagnetizing factors with various lattice arrangements has been established quantitatively. The signature of distinct spin wave modes, spatially localized in the constituent nanomagnets, was observed and tuned by the lattice arrangements and applied field orientation. The experimental results are well complemented with micromagnetic simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.