Abstract

Abstract Recent observational studies have suggested a role for soil moisture and land–atmosphere coupling in the 15-day westward-propagating mode of intraseasonal variability in the West African monsoon. This hypothesis is investigated with a set of three atmospheric general circulation model experiments. 1) When soil moisture is fully coupled with the atmospheric model, the 15-day mode of land–atmosphere variability is clearly identified. Precipitation anomalies lead soil moisture anomalies by 1–2 days, similar to the results from satellite observations. 2) To assess whether soil moisture is merely a passive response to the precipitation, or an active participant in this mode, the atmospheric model is forced with a 15-day westward-propagating cycle of regional soil moisture anomalies based on the fully coupled mode. Through a reduced surface sensible heat flux, the imposed wet soil anomalies induce negative low-level temperature anomalies and increased pressure (a cool high). An anticyclonic circulation then develops around the region of wet soil, enhancing northward moisture advection and precipitation to the west. Hence, in a coupled framework, this soil moisture–forced precipitation response would provide a self-consistent positive feedback on the westward-propagating soil moisture anomaly and implies an active role for soil moisture. 3) In a final sensitivity experiment, soil moisture is again externally prescribed but with all intraseasonal fluctuations suppressed. In the absence of soil moisture variability there are still pronounced surface sensible heat flux variations, likely due to cloud changes, and the 15-day westward-propagating precipitation signal is still present. However, it is not as coherent as in the previous experiments when interaction with soil moisture was permitted. Further examination of the soil moisture forcing experiment in GCM experiment 2 shows that this precipitation mode becomes phase locked to the imposed soil moisture anomalies. Hence, the 15-day westward-propagating mode in the West African monsoon can exist independently of soil moisture; however, soil moisture and land–atmosphere coupling act to feed back on the atmosphere and further enhance and organize it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.