Abstract

Dissolution of pyroxene in garnet at ultrahigh pressures produces supersilicic garnet with the coupled substitutions of SiVI + MVI = AlVI + AlVI and SiVI + NaVII=AlVI + MVII, which are enhanced by rising pressure. The supersilicic garnet and exsolution of pyroxene, rutile, apatite and quartz in garnet during decompression were found in natural rocks, pointing to the importance in studying mantle-derived rocks and ultrahigh pressure metamorphism related to plate deep subduction. Ti, P, K and H2O enters garnet via the substitutions of Ti = Si, PIV+NaVII = SiIV + CaVII, SiVI+KVII = AlVI+MVII, and [(OH)4]4− = [SiO4 4− or [4H]4+ = Si4+ respectively. The possible entering of Eskola pyroxene component M0.5AlSi2O6 in clinopyroxene, together with the common pyroxene component M2Si2O6, into garnet can lead to the presence of the substitution of SiVI +0.5D□VII= AlVI +0.5MVII in garnet structure, which plays a key role in the exsolution of rutile, apatite and quartz in garnet. Two new breakdown reactions are thus proposed on the basis of the new coupled substitution, which can be regarded as a theoretical model for the exsolution of the 3 minerals in garnet. The real exsolution may be a combination of several breakdown reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.