Abstract

Vortex Induced Vibrations (VIV) cause major fatigue damage to long slender bodies and have been extensively studied in the past decades. While most of the past research focused on the cross flow direction, it was recently shown that the inline motion in the direction of the flow has a major impact on the fatigue life damage due to its higher frequency (second harmonic) and more importantly, its coupling with the crossflow motion, which triggers a third harmonic stress component in the cross flow direction. In this paper, the coupled inline-crossflow VIV problem is addressed from semi-empirical modeling of fluid forces. Extensive fine grid forced inline-crossflow VIV experiments were designed and carried out in the MIT towing tank. An inline-crossflow VIV hydrodynamics coefficients database was newly constructed using the experimental results and it is expected to be useful for other semi empirical programs predicting coupled inline-crossflow VIV in the field. Several key hydrodynamic coefficients in the database, including lift force coefficients, drag force coefficients and added mass coefficients, were systematically analyzed. The coefficients in the crossflow and the inline directions were found to have strong dependency on the phase between the inline and crossflow motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.