Abstract

This work analyses the effects on the efficiency of the winding-to-winding capacitance of the coupled-inductor of the bidirectional non-inverting buck–boost converter in high-voltage applications. This converter presents many advantages that make it suitable for low-voltage hard-switching photovoltaic and fuel cell hybrid systems. However, experimental results obtained using the previously reported procedure to implement the coupled inductors show low-efficiency in high-voltage applications. A different implementation procedure of the coupled inductors, with lower winding-to-winding capacitance, is proposed. High-efficiency experimental results from a 400 V 1.6 kW prototype have been achieved over a wide operating voltage range, thanks to the use of SiC devices and the modified coupled inductors, confirming in this way its good potential as a building block also in high-voltage wide-gain-range applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.