Abstract
In recent years, more considerable attentions are paying on the hazards of large-scale landslides induced by heavy rainfall. However, the heterogeneity in hydraulic properties of soils may affect the seepage pattern of water infiltrated into soil slopes. Inspired by this fact, this paper aimed to evaluate the effect of the spatial variability in hydraulic conductivity on failure mechanism of an unsaturated soil slope subjected to rainfall infiltration, being implemented in the framework of a transient coupled hydro-mechanical analysis. The concept of random field was adopted to model the spatial randomness of saturated hydraulic conductivity ks following a uniform distribution. The finite element method was then incorporated to conduct Monte Carlo simulations. The resultant findings show that the mode of shallow slope failure is more likely to occur than the deep one due mainly to the highly variable distribution of ks near slope surface. Note that the decrease in the effective stress of soils resulting from the increase of pore water pressure is the most critical reason for the occurrence of slope failure. In addition, from the random element analyses results, it indicates that the value of Qari calculated by performing a deterministic analysis based on arithmetic average value kari gives a prediction of flow rate on average, but the calculated Qmax based on maximum value kmax provides a more conservative assessment on total flow rate across soil slope, which can offer useful suggestions for practitioners to take available measures to drain in advance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.