Abstract

We investigate the coupled dynamics of charge and energy in interacting lattice models with dipole conservation. We formulate a generic hydrodynamic theory for this combination of fractonic constraints and numerically verify its applicability to the late-time dynamics of a specific bosonic quantum system by developing a microscopic non-equilibrium quantum field theory. Employing a self-consistent $1/N$ approximation in the number of field components, we extract all entries of a generalized diffusion matrix and determine their dependence on microscopic model parameters. We discuss the relation of our results to experiments in ultracold atom quantum simulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.