Abstract

Fractured rock has often been conceptualized as a dual-continuum system for many practical applications. This study proposes a systematic approach to deal with multiphase flow in a dual-continuum system. Considering that fluid flow occurs in pore volumes (including fracture apertures), we first develop a so-called pore-space conservation equation for deformed fractured rock and then combine this equation with fluid mass balance to derive governing equations for multiphase flow associated with rock deformation. Constitutive relationships are also presented for describing stress dependence of hydraulic properties and effective mechanical parameters for bulk rock body (as a function of the corresponding parameters for fracture and matrix continua). Finally, we applied the developed approach to a CO2 geological sequestration problem to demonstrate the usefulness of the approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.