Abstract

Process mining provides process improvement in a variety of application domains. A primary focus of process mining is transferring information from event logs into process model. One of the issues of process mining is dealing with invisible prime tasks. An invisible prime task is an additional task in the process model to assist in showing real processes. However, a few of algorithm solves the issue. This research proposes an algorithm for dealing with invisible prime tasks. The proposed algorithm contains rules and equations utilizing probability of state transition of Coupled Hidden Markov and double time-stamped in event logs. The rules and equations are used for determining invisible prime tasks and parallel control-flows patterns. In addition to dealing with invisible prime tasks, the experiment results also show that the proposed algorithm obtains right parallel control-flow patterns from non-complete event logs. This proposed algorithm also decreases usage of the invisible prime task in A# algorithm without reducing the quality of discovered process models. It has proven with the fitness of process models obtained by the proposed algorithm are relatively high as those obtained by A# algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.