Abstract
This paper proposes a human action recognition method via coupled hidden conditional random fields model by fusing both RGB and depth sequential information. The coupled hidden conditional random fields model extends the standard hidden-state conditional random fields model only with one chain-structure sequential observation to multiple chain-structure sequential observations, which are synchronized sequence data captured in multiple modalities. For model formulation, we propose the specific graph structure for the interaction among multiple modalities and design the corresponding potential functions. Then we propose the model learning and inference methods to discover the latent correlation between RGB and depth data as well as model temporal context within individual modality. The extensive experiments show that the proposed model can boost the performance of human action recognition by taking advance of complementary characteristics from both RGB and depth modalities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.