Abstract

This paper considers the treatment of fluid–solid interaction problems under shock wave loading, where the solid experiences large bulk Lagrangian displacements. This work addresses the issues associated with using a level set as a generalized interface for fluid–solid coupling where the fluid–solid interface is embedded in an unstructured fluid grid. We outline the formulation used for the edge-based unstructured-grid Euler solver. The identification of the fluid–solid interface on the unstructured fluid mesh uses a super-sampled ℒ2 projection technique, which in conjunction with a Lagrangian interface position, permits fast identification of the interface and the concomitant imposition of boundary conditions. The use of a narrow-band approach for the identification of the wetted interface is presented with the details of the construction of interface conditions. A series of two and three-dimensional shock-body computations are presented to demonstrate the validity of the current approach on problems with static and dynamic interfaces, including projectile/shock interaction simulations. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call