Abstract

The design of squirrel-cage induction motors (IMs) entails the capability to predict the motor efficiency map with high accuracy over an operating range. In particular, modeling harmonic rotor bar currents becomes important for loss analysis. In theory, it is possible to analyze an induction motor using time-stepping finite element analysis (TS-FEA); however, this is not viable due to computational limitations. To bridge this gap, we set forth a computationally efficient method that couples magnetostatic FEA with a qd-circuit model of the cage. The proposed IM model includes the effects of saturation, winding and slot harmonics, as well as nonuniform current density distribution in the rotor bars. The model is presented in two parts. Part I focuses on the formulation of a qd cage circuit model with segmented bars. Part II is a companion paper that proposes an FEA-based parameter estimation and a solution method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.