Abstract
Natural hazards such as large debris flow events can have catastrophic effects on the environment and critical infrastructure, posing a significant threat to human life. Debris flows often exhibit high velocity, high-pressure discharges due to their bulk volume, and the capacity to transport considerable volumes of large rocks, boulders, and woody debris. Although debris flow run-out simulations are commonly performed using hydraulic modelling software, these environments are seldom capable of assessing the interaction between the debris fluid, transported material, and protective structures. In this research, large deformation numerical models are calibrated using input parameters from hydraulic modelling software. Due to the computational cost of the large deformation models involving fluid-solid-structure simulation with flexible net barriers, an equivalent stiffness method is implemented to provide comparable performance through a membrane structure. The Coupled Eulerian-Lagrangian Finite Element method is used to model the impact forces of rocky boulders on the membrane, exhibiting damage characteristics consistent with flexible ring-net protective structures. The Coupled Eulerian-Lagrangian model results highlight the performance of the simplified membrane, as shown through a benchmark simulation of debris flow with boulders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.