Abstract
The influence of the ion transfer on photoinduced electron transfer (ET) reactions was studied on the surface of hyperbranched semiconducting BiVO4 particles spontaneously adsorbed at the liquid-liquid (L/L) interface between an aqueous LiCl solution and bis(triphenylphosphoranylidene) ammonium tetrakis(pentaflurophenyl)borate (BATB) in 1,2-dichlorethane. The organic electrolyte was supplemented with [Co(bpy)3](PF6)3 to accept photoexcited electrons from BiVO4 under formation of the corresponding Co(II) complex. The L/L interface was stabilized at the orifice of a micropipette (MP) and allowed to record ion transfer cyclic voltammetry (ITCV) by applying a Galvani potential difference between two reference electrodes in the electrolyte solutions with intermittent illumination by visible light (λ>420 nm). The photogenerated holes caused oxidation of water to O2. Co(II) and O2 were detected at constant at an amperometric microelectrode (ME) facing the orifice of the MP in either the organic or the aqueous electrolyte. The overall current exhibits a photocurrent only in the -range, in which the IT of PF6 - is kinetically limited. The amperometric detection of photogenerated products followed the same pattern as the photocurrent in the total current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.