Abstract
A mechanistic understanding of the process of underground corrosion is important for modeling pipeline deterioration. In this study, a time-dependent multiscale numerical model incorporating electrochemistry and soil hydrology is developed. The model realistically simulates soil moisture and aeration conditions and their influence on anodic/cathodic activity without prior definition. In this manner, both micro- and macrocell corrosion and their evolution with time are simulated along with the effects of differential aeration. The model was validated with low-alloy cast iron corrosion data from the United States National Bureau of Standards corrosion exposure study. The effect of soil aeration in controlling soil corrosiveness was simulated with suitable boundary conditions. It was demonstrated that macrocells arising due to differential aeration can lead to elevated levels of corrosion in pipelines, especially in fairly aerated soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.