Abstract

Intermolecular noncovalent forces between polymer chains influence the mobility and glass-transition temperature (Tg), where weaker interchain interactions, all else being the same, typically results in lower bulk polymer Tg. Using molecular dynamics simulations, here we show that this relation can become invalid for supported ultrathin films when the substrate-polymer interaction is extremely strong and the polymer-polymer interactions are much weaker. This contrasting trend is found to be due to a more pronounced substrate-induced appreciation of the film Tg for polymers with weaker intermolecular interactions and low bulk Tg. We show that optimizing this coupling between substrate adhesion and bulk Tg maximizes thin film Tg, paving the way for tuning film properties through interface nanoengineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.