Abstract
Cu-Zn alloy is an advanced material with deformation twinning mechanism, which is complicated by coupled effects of temperature and strain rate. In this paper, a theoretical model of Cu-Zn alloy is proposed, which accounts for the coupled effects of strain rate and temperature. The model can accurately predict the experimentally observed tendency of the spacing evolution of twin boundary (TB), and it confirms that low temperature and high strain rate promote deformation twinning. Moreover, it is shown that deformation twining is more susceptible to low temperature than to high strain rate, while TB spacing and twin layer thickness values decrease at high strain rates and low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.