Abstract

A full time-domain analysis program is developed for the coupled dynamic analysis of offshore structures. For the hydrodynamic loads, a time domain second order method is developed. In this approach, Taylor series expansions are applied to the body surface and free-surface boundary conditions, and the Stokes perturbation procedure is then used to establish the corresponding boundary value problems with time-independent boundaries. A higher-order boundary element method (HOBEM) is developed to calculate the velocity potential of the resulting flow field at each time step. The free-surface boundary condition is satisfied to the second order by fourth order Adams–Bashforth–Moultn method. An artificial damping layer is adopted on the free surface to avoid the wave reflection. The mooring-line/tendon/riser dynamics are based on the rod theory and the finite element method (FEM), with the governing equations described in a global coordinate system. In the coupled dynamic analysis, the motion equation for the hull and dynamic equations for mooring-lines/tendons/risers are solved simultaneously using the Newmark method. The coupled analysis program is applied for a truss Spar motion response simulation. Numerical results including motions and tensions at the top of mooring-lines/risers are presented, and some significant conclusions are derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.