Abstract

Heterogeneous rhythmic-zonal aggregates of tennantite-IV replaced partly or completely early homogeneous Zn-tetrahedrite-I and euhedral (Fe-Zn)-tennantite-I crystal were found in ores of the Darasun gold deposit. Different replacement stages of fahlore were observed. It initiates at grain boundaries and is terminated by a complete transformation into pseudomorphic newly formed (Zn-Fe)-tennantite-IV aggregates rimed with Zn-tetrahedrite-IV. These aggregates associated intimately with bournonite and galena and their deposition initiated the pseudomorph formation. EMPA revealed that (Fe-Zn)-tetrahedrite richer in As relative to Zn-tetrahedrite-I was deposited at initial stage. Tennantite with wide variation in Sb/(Sb + As) and Fe/(Fe + Zn) ratios predominantes in heterogenous zonal aggregates of (Fe-Zn)-tetrahedrite-tennantite-IV. A negative correlation between the Sb/(Sb + As) and Fe/(Fe + Zn) was found in these minerals. In each site at the contact between Zn-tetrahedrite-I and newly formed (Fe-Zn)-tetrahedrite-tennantite-IV a miscibility gap between As and Sb a sharp drop in the Sb/(Sb + As) ratio and an increase in Fe/(Fe + Zn) ratio occur. Sharp saw-shape boundaries between Zn-tetrahedrite-I and tennantite-IV and voids in newly formed aggregates are considered to be evidence for couple dissolution-precipitation reactions. The dissolution was initiated due disequilibrium between Zn-tetrahedrite-I and an undersaturated fluid resulted from deposition of galena and bournonite. Precipitation of tetrahedrite-tennantite-IV occurred under oscillation in Sb/(Sb + As) and Fe/(Fe + Zn) ratios due to the metal and semimetal contents in the fluid. Crystallization temperature of zonal-heterogenous tennantite-IV aggregates was calculated by sphalerite-fahlore geothermometer which shows (134161) 20 С. Instability of early Zn-tetrahedrite-I resulted from fluid cooling, decreasing in fluid salinity, changing in tetrahedrite and tennantite solubility due to an evolution of migration conditions of semimetals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call