Abstract
AbstractCyanobacteria blooming in surface waters have become a major concern worldwide, as they are unsightly, and cause a variety of toxins, undesirable tastes, and odors. Approaches of mathematical process-based (deterministic), statistically based, rule-based (heuristic), and artificial neural networks have been the subject of extensive research for cyanobacteria forecasting. This study suggests a new framework of linking an evolutionary computational method (a genetic algorithm) with a data driven modeling engine (model trees) for external loading, physical, chemical, and biological parameters selection, all coupled with their associated time lags as decision variables for cyanobacteria prediction in surface waters. The methodology is demonstrated through trial runs and sensitivity analyses on Lake Kinneret (the Sea of Galilee), Israel. Model trials produced good matching as depicted through the results correlation coefficient on verification data sets. Temperature was reconfirmed as a predominant par...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Water Resources Planning and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.