Abstract

Transthylakoid proton transport based on Photosystem I-dependent cyclic electron transport has been demonstrated in isolated intact spinach chloroplasts already at very low photon flux densities when the acceptor side of Photosystem I (PS I) was largely closed. It was under strict redox control. In spinach leaves, high intensity flashes given every 50 s on top of far-red, but not on top of red background light decreased the activity of Photosystem II (PS II) in the absence of appreciable linear electron transport even when excitation of PS II by the background light was extremely weak. Downregulation of PS II was a consequence of cyclic electron transport as shown by differences in the redox state of P700 in the absence and the presence of CO2 which drained electrons from the cyclic pathway eliminating control of PS II. In the presence of CO2, cyclic electron transport comes into play only at higher photon flux densities. At H(+)/e=3 in linear electron transport, it does not appear to contribute much ATP for carbon reduction in C3 plants. Rather, its function is to control the activity of PS II. Control is necessary to prevent excessive reduction of the electron transport chain. This helps to protect the photosynthetic apparatus of leaves against photoinactivation under light stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call