Abstract

This paper deals with the computational aspects of a coupled creep-elastoplastic-damage analysis for anisotropic, and as a special case isotropic nonlinear materials. A three phase backward Euler integration algorithm for stress update is proposed. For anisotropic nonlinear materials a general direct stress return mapping algorithm, utilising Newton-Raphson iteration, is derived. The stress vector and scalar variables quantifying the incremental creep, plasticity and damage are updated simultaneously. For isotropic materials the elasto-plastic stress update algorithm for plane stress by Jetteur (1986, Engng Camp.3, 251–253) is extended to include creep and damage. In addition, a simple stress algorithm for the general three-dimensional isotropic case is also presented. The resulting algorithms are suitable for inclusion in general structural analysis codes. The consistent tangent matrix is also formulated for use in a global Newton iterative procedure, in which structural displacements are sought as the problem unknowns. Examples are given using the general purpose code LUSAS in which the algorithms have been implemented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.