Abstract

Infections of emerging and reemerging viruses (SARS-CoVs, influenza H1N1, etc.) largely and globally affect human health. Animal models often fail to reflect a physiological status because of species tropism of virus infection. Conventional cell lines are usually genetically and phenotypically different from primary cells. Developing an in vitro physiological model to study the infection of emerging viruses will facilitate our understanding of virus-host cell interactions, thereby benefiting antiviral drug discovery. In the current work, we first established normal airway epithelial cells (upper and lower airway track) in 2D and 3D culture systems using conditional reprogramming (CR) and air-liquid interface (ALI) techniques. These long-term cultures maintained differentiation potential. More importantly, these cells express two types of influenza virus receptors, α2-6-Gal- and α2-3-Gal-linked sialic acids, and angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoVs as well. These cells were permissive to the infection of pandemic influenza H1N1 (H1N1pdm). In contrast, the lung cancer cell line A549 and immortalized airway epithelial cells (16HBE) were not susceptible to H1N1 infection. A virus-induced cytopathic effect (CPE) on 2D CRC cultures developed in a time-dependent manner. The pathological effects were also readily observed spreading from the apical layer to the basal layer of the 3D ALI culture. This integrated 2D CRC and 3D ALI cultures provide a physiological and personalized in vitro model to study the infection of emerging viruses. This novel model can be used for studying virus biology and host response to viral infection and for antiviral drug discovery.

Highlights

  • Several major outbreaks of acute viral pneumonia caused by emerging viruses have greatly threatened public health since this century

  • The cancer cell line A549 formed anchorage-independent colonies (Figure 1(d)). These results indicated that human normal tracheal epithelial cells (HNTEC) and human normal bronchial epithelial cells (HNBEC) are nontumorigenic

  • To investigate whether HNTEC and HNBEC have the intact p53-mediated growth-related pathways and normal function to respond to the DNA damage, the cells were treated with actinomycin D (Act D)

Read more

Summary

Introduction

Several major outbreaks of acute viral pneumonia caused by emerging viruses have greatly threatened public health since this century. In March 2009, a novel influenza virus emerged in Mexico and the United States. This virus was found to be a reassortant influenza H1N1 originated from multiple species-derived viruses. Thereafter, the H1N1 strain (pandemic influenza A, H1N1pdm) became a seasonal virus circulating over the world [2]. In February 2003, an outbreak of Severe Acute Respiratory Syndrome (SARS) was first reported in Guangdong Province of China. The pathogen was identified as SARS coronavirus (SARS-CoV) [3]. The SARS-CoV is an enveloped RNA virus and infected 8,096 cases and caused

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.