Abstract

Zeolite-catalyzed polyethylene (PE) aromatization achieves reduction of the aromatic yield via hydrogenation and hydrogenolysis reactions. The hydrogen required for CO2 hydrogenation can be provided by H radicals formed during aromatization. In this study, we efficiently convert PE and CO2 into aromatics and CO using a zeolite-metal oxide catalyst (HZSM-5 + CuZnZrOx) at 380°C and under hydrogen- and solvent-free reaction conditions. Hydrogen, derived from the aromatization of PE over HZSM-5, diffuses through the Brønsted acidic sites of the zeolite to the adjacent CuZnZrOx, where it is captured in situ by CO2 to produce bicarbonate and further hydrogenated to CO. This favors aromatization while inhibiting hydrogenation and secondary hydrogenolysis reactions. An aromatic yield of 62.5 wt % is achieved, of which 60% consisted of benzene, toluene, and xylene (BTX). The conversion of CO2 reaches values as high as 0.55 mmol gPE-1. This aromatization-hydrogen capture pathway provides a feasible scheme for the comprehensive utilization of waste plastics and CO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.