Abstract

Complex compositional and displacive modulations of the crystal structure of KLaMnWO6 are imaged with atomic resolution by means of scanning transmission electron microscopy (STEM). This oxide is stabilized by cation vacancies leading to a La1+x/3K1-xMnWO6 stoichiometry. Compositional modulation on both the K and La layers are revealed in the high-angle annular dark-field STEM (HAADF-STEM) images. The compositional modulation within the La layer is coupled with the modulation of the octahedral tilting, which is exposed by imaging of the anion sublattice in annular bright-field STEM (ABF-STEM) images. These complex modulations are accommodated in a 5√2ap × 5√2ap × 2ap perovskite-type structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call